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Preface

. The intent of this report is to examine the robustness character-
istics of a newly developed digital control law, This study will
hopefully give insight to the use of the Output Predictive Dead-Beat
Control law.

I wish to express my appreciation to my advisor, Professor J. Gary Reid
for his guidance, assistance and patience throughout the year. His
motivation and suggestions helped make this report as complete as
possible.

Finally, I would like tn thank my typist, Cathy Motsch, for her

excellent work and suggestions.
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Abstract -~

" A new discrete control law (§g£,37/i; implemented and examined.
Robustness to noise and model errors of the control law as sample
rate varies is analyzed. This analysis is conducted while controlling
several different very lightly damped, single input/single output systems
which are representative of the flutter dynamics of the B-52E wing ,
\(325_5;,M§:1“

The control law performance is different at separate sample rates.
A distinct range of sample rates are found to have a better response
to noise than other sample rates. Another range'is found to be more
robust when there exists an error in the models used to calculate the
closed loop control law. When these ranges of sample rates intersect,
the robustness characteristics at those s;mple rates is found to be
good with respect to both noise and model mismatch.

As theoretically predicted,éa<{sz”37/§L;;lationship between
condition number of the system Hankel matrix and robustness seems to
exist. Hence, these simulated results appear to validate the theoretical
results on robustness predicted by Reid, but on the other hand, these
simulated results indicate that the total anaiysis of Probustness? 1is
a very complex issue and cannot, at this point, be totally predicted
by such a parameter as simple as the condit{on number of the Hankel

matrix.
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ROBUSTNESS STUDIES OF OUTPUT PREDICTIVE

DEAD-BEAT CONTROL FOR WING FLUTTER CONTROL APPLICATIONS

I Introduction

Background

The dead-beat control law for discrete systems is now well known
and understood. Simply stated, the dead-beat control law assigns the
discrete time closed loop eigenvalues to the origin. The states will

be brought precisely to rest (assuming no additional disturbances) in

no more than n (system order) discrete steps. Thus the dead-beat control

law has been treated as an eigenvalue/eigenvector assignment problem
(Ref 2, 4). The dead-beat control law anticipates the system response
by feeding back all of the system states.

Another approach for anticipation of the systems response is to
actually predict the system output into the future. Then, using this
predicted output determine a control action which forces the predicted
output identically to rest and remain at rest with no further required
input. Output Predictive Dead-Beat Control (OPDEC) uses this approach
in the formulation of its control law.

In the formulation of OPDEC, there is no restriction on the
selection of the discrete sample rate. Theoretical analysis of OPDEC
produced an approach for selection of an optimal sample rate, which

might enhance the systems over-all robustness (Ref 4).

Objectives

This report i1s concerned with the verification of the robustness
properties, with respect to noise and model errors, of OPDEC, and not

with the underlying theory used in the formulation of the control law.




The initial objectives of this report is to develop two programs for

‘ robustness verification. The first program finds the optimum sample
rate of a given system. The second program implements OPDEC in a
simulated closed loop ehvironment with noise and model mismatch.
After development of the programs and selection of a system to control,
verification of OPDEC is then performed. Such items as analysis of
robustness properties versusgsample rate is a major objective. Checking
the robustness properties of OPDEC when using a nonminimum phase system
became another interesting area of concern. These objectives stated

above are the prime areas of investigation of this report.

Potential Applications

This thesis is to provide a basis for possible future digital
flight control applications of OPDEC. The OPDEC concept appears to be
a good candidate for digital flight conttql applications because of its
1' "robustness" properties. This characteristic is desirable because of
dramatic changes in the B-52E's wing flutter dynamics with changing
flight conditions (altitude and airspeed). The mathmatical models that
describe the wing flutter dynamics of the B-52E (Ref 6) will be shown

later.
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I1 Theory

An important class of control problems is the so called "tracking
problem”. The closed loop "tracking problem" roughly is the following.
For a given reference variable, find an input such that the controlled
system output follows or tracks the reference. A class of tracking

problems consist of those where the reference variable is a constant.

Such a problem is called‘the regulator problem (Ref 1: Ch 2).

With rapid development and miniaturization of digital computers,
their use in control systems has become ver& common. A discrete con-
troller that solves the regulator problem is the “dead-beat" controller.
The "dead-beat" controller drives any initial state to zero in (at most)
n steps, where n is the system order. The states, however, will not be
driven to zero if the output is driven to zero (Ref 4: Ch 13). The
output might have an unacceptable response between sample periods.

The Output Predictive "Dead-Beat' Controller (OPDEC) derived by
Reid (Ref 3) has an acceptable response between sample rates when the
output is driven to zero. The OPDEC control law will drive the output
from any initial point to zero in at most n discrete steps. Because of
the formulation, the output will also remain at zero unless disturbed.
This means the "states" of the system are actually driven to zero in
these n discrete steps. The needed sequence of control are obtained

from (Ref 3)

UCk) = =(0.,0., ,1)-Hol-¥(ktn/k-1) )
k=0,1,2,...,n~1

where the output prediction vectors




y(k+n/k-1) |
y(k+n+1/k-1)

I(ctn/k-1) =| : (2)
y(k+20-1/k-1)

elements is the output of the system at discrete times k+n, kin+l, ....,
k+2n-1 due to the system states at time k, or inputs up to time k-1,
and H, is the discrete time Hankel matrix of size n. The Hankel matrix,

shown below

fh(1) h(2)..... h(n)
h(2) h(3)..... h(n+l)
h(3) h(a)ooo'o h(n+2) (3)

. . .
- . .
. . .

h(n) h(n+l)... hizn-n_j

has only 2n-1 separate elements. This is helpful when trying to implement
OPDEC on a small computer. The components of H, are the discrete impulse
response of the system to be controlled.

According to Reid (Ref 3) given a SISO system
x(t) = A-x(t) + Bu(t) (4)
x(0) = x, (5)
with sampled output (sample time T)
y(kT) = C-x(kT) (6)

that is completely observable and completely controllable, with a

discrete time model of the system (4)-(6) denoted as

x(k+l) = F.x(k) + G-u(k) ¢))
x(0) =X (8)
y(k) = C-x(k) ¢)]
wvhere
4
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F = el (10)

G = (forerT.dr) B (11)

output can be driven to zero in n steps using OPDEC to control the
system.

The elements of the output prediction vector, Y(k+n/k-1), can be
found by

&

y(a/k-1) = C*F" ¥.x(k) : a2

or by the discrete conclution summation
o«

y@/k-1) = I h(m-k+i) ulk-1) (13)

Since equation (12) can be used for prediction whether the open loop
system is stable or unstable, this thesis will use equation (11) for
output prediction. This will enhance future studies of OPDEC to
controlling unstable systems.

Everything that has been discussed so far has not severely limited
us in selection of the sample rate. The sample rate that minimizes the
condition number of the Hankel matrix yields controls with good magnitude
properties (Ref 4). This thesis is investigating if this same sample
rate will yield good robustness characteristics as compared to other
sample rates. This sample rate, in this report, is called the "oﬁtimal"

sauple rate.




II1 Investigation

The investigation into the characteristics of OPDEC required two
FORTRAN programs to implement the algorithm (See Appendices A and B).

The first program implements a plot of the condition number versus the
sample rate. This plot is used to find the optimal sample rate for the
sampled data controller. This theoretical “optimum" occurs when the
reciprocal condition number is a maximum (Ref 3). To verify the existance
of an optimal sample rate with respect to robustness characteristics,

the optimal sample rate and selected other sample rates were then used

in the implementation of OPDEC.

The second progrdam implements OPDEC and all the possible options
needed to investigate the actual closed loop robustness properties of
OPDEC (See Fig 1). This program is split into four general sectioms.

The part initializes the program by reading in the inputs and generation
of the initial state vector, x(o). Some of the inputs that are read in
are the true and perturbed state matrix equations, sample rate and logic
switches. The second part takes the state vector, x(k), and predicts

the output in the future. These predictions are put in a vector format,
y. This is done using either the true model as perturbed model according
to the switch one (SW1) logic value. The third part takes the predicted
output and uses the Hankel matrix, which it generates (Ref 3), to find
the input, U. The Hankel matrix can be created using the true model or
& perturbed model according to switch two's (SW2) logic value. The
fourth part takes the input, U, and state vector x(k), and updates the
state vector one sample time, x(k+l). Also, at this point, one can add
noise to the input before it is applied to the true system. Also one can

add noise directly to the updated states, x(kt+l), before they are used in
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the next prediction. The noise added in each case is a zero mesn white
guassian noise with selectable average strength. The programs are

discussed in detail in appendix A and B.

Models

This thesis used basically two math models. These models will be
modified to help answer some basic robustness questions. The models
are both reduced order models of the B-52E wing flutter modes (Ref 6).
They both are very lightly damped. One is a fourth order system (Table 1)
and the other is a tenth order system (Table 2). Most of the analysis
was done on the fourth order system to save computer simulation time.
The tenth order system was mainly used to see effects of reduced order

models controlling larger systems.

TABLE 1

4th Order SISO System

Open-loop transfer function

8611.7698

§441.653+4274.075524279.0965+8611.7698

EIGENVALUES

-055 + j 6.0
‘.55 - j 6-0
-.25 + § 15.4
-.25 - § 15.4

‘ B 5 ST S TIURTEN 3 H
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TABLE 2

10th Order SISO System

Open~loop transfer function

NUMERATOR
POLYNOMIAL ZEROS
{ -6607. )Sk%9 ( .8112E-04) + j( .19443-01)
( .2970E+06)S**8 ( .8112E-04) + j( -.1944E-01)
(  -.2667E+07) S**7 ( -1.843 ) + 3¢ 4.255 )
(  .1405E+09)S**6 ( -1.843 ) + §( -4.255 )
( -.8689E+08)S#**5 ( 3.343 ) + 3( -15.59 )
(  .2036E+11)S**4 ( 3.343 ) +3(C  15.59 )
(  .5901E+11)S**3 ( -2.344 ) +3( 15.48 )
(  .4132E+12)S**2 ¢ -2.344 ) + §( -15.48 )
(  ~.4475E4+08)S**1 ( 46.64 ) +3(C O. )
(  .1561E+09)
DENOMINATOR
POLYNOMIAL POLES

( 1.000 )S*%10 ( -.9234E-03) + j( .6579E-01)
( 6.626 )S**9 ( -.9234E~03) + j( -.6579E-01)
(  948.6 )S**8 ( -.6772 ) + 3¢ -1.053 )
(  4540. )Sk*7 ( -.6772 ) +3( 1.053 )
(  .2910E+06)S*%6 ( -.5446E-01) + j( 15.51 )
(  «8712E406) S**5 ( -=.54646E-01) + j( -15.51 )
(  .2919E+08) S**4 ( -1.917 ) + §¢ 16.84 )
(  .3885E+08)S#*3 ( -1.917 ) +3( -16.84 )
(  .4425E+08) S**2 ( -.6631 Y +3(C 20.15 )
(  .2493E+06)S**1 ( -.6631 ) +3(C -20.15 )
( .1907E+06)

Questions to be Addressed

The emphasis of this thesis is to investigate robustness properties
of OPDEC with respect to model errors and noise addition. The obvious
question to ask is how robust is OPDEC, and what factors enhance the
robustness properties of OPDEC. The idea of an optimal sample rate
naturally raises the question of the existance of an optimum. Since
the Hankel matrix is instrumental in the selection of the optimum sample
rate and in the usage of OPDEC, it would be interesting to see vhat
sensitivities the Hankel matrix has. It would also be interesting to
exanine the issue of performance and robustness for non-minimum phase




systems. Controlling a system, with zeros in the right half plane,

in the past has been difficult.

Procedure and Results with 4th Order SISO System

The following results use the same basic fourth order math model
described previously. In some sections there has been modifications to
this basic system. These modifications were needed to answer some
specific questions and will be discussed in each section.

The system is assumed to start at a random initial state of

7.049
8.095
x(0) = 5 007
9.745

in phase variable coordinates. For convenience, this coordinate system
was selected and due to time considerations, this initial state was to
only initial starting point used. The open loop response of the system

from this initial state is shown in Figure 2.

Selection and Implementation of Sample Rates

The basic fourth order system was analyzed with the first program
(Appendix A). From this analysis of the reciprocal condition number
(See Fig 3) the optimum sample rate occurs at T = .152, with a maximum
value of 1/K = .32356.

Besides this optimum sample rate, it was desired to compare perfor-
mance at several other selected sample rates. An interesting sample
rate to look at is t = .231. This sample rate occurs at the relative
msximum of the second lobe. This sample rate was chosen to see if
relative optimization occurs. Two other sample rates chosen are .113
and .182. They were chosen because their condition numbers were the

ssme a8 the sample rate of .231. This was done to see if the value of

10
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the condition, no matter where it occurs,. can be used to predict the
robustness of the system. Another sample rate chosen was .954

because it occurs at the relative maximum of the last lobe. It was
chosen because its condition number is close to the value of the previous
three. The sample rates chosen, their reciprocal condition number and
their condition numbers are listed in Table 3. The next three sample
rates were chosen because of their small condition numbers. The sample
rates are .085, .214 and .5. The last three sample rates were chosen
because of their very small reciprocal condition numbers. The sample
rates are .04, .623 and .835. These choices of sample rates appear to
cover the broad range of the condition number and should provide enough

information for this study.

TABLE 3
SAMPLE RATES

CHOSEN 1/K K

.152 32356 3.090
.231 .10646 9.392
.182 .10714 9.333
.113 .10664 9.377
.954 .09551 10.469
.085 .00925 108.101
.214 .00930 107.511
.5 .00931 107.366
.04 .0004160 2403.557
.623 .00003552 28151.568
.835 .000423 " 2363.574

The plots of the output predictive response and the sequence of
control inputs for selected sample rates are shown in Figures 4 thru 16.
These plots were generated using the true model in both prediction and

control phases and no noise added. Figures 4 and 5 are the output
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response and control inputs at the optimum sample rate (.152). The
output response and control inputs for sample rates of .113, .182 and
.231 are shown in Figures 6 and 7. The output response for sample rates
of .085, .214 and .5 are shown in Figure 8. The control inputs for
sample rates of .5 and .214 are shown in Figure 9. Due to the large
scale needed, the control inputs for the sample rate of .085 is shown
separate in Figure 10. The output response and control inputs for the
sample rate of .04 are shown in Figures 11 and 12. Looking at Figures
10 and 12, the control inputs for two "poorly conditioned" sample rates,
one notices the inputs getting larger as the reciprocal condition number
is getting smaller. This is what was expected from the theory (Ref 3).
Figures 13 and 14 are the output response and control inputs for the
sample rates of .623 and .954. The output response and control inputs
for the sample rate of .835 is shown in Figures 15 and 16.

Studying the Figures, one notices some trends. First, as the sample
time increases the output response starts fluctuating more. This is
because the sample rate is slower than the natural frequency of the
system and the system has more time to fluctuate. As the sample rate
gets small, the value of the control inputs increase. This is shown by
Figure 7. Thirdly, the condition number has some effect on the size of
the control inputs. When both small reciprocal condition numbers and
small sample rates combine, the control input becomes huge (Fig 12).
Notice the magnitude difference in control input required between sample
rate of .152 and .04. This is caused by the small time increment the
system has to achieve the dead-beat response. For the 4th order system,
the system comes to rest in 4 steps regardless of the sample rate. Thus
with a high sample rate the system has to work much harder to drive the
states to zero in the four steps. This is the major cause of magnitude

difference.
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Effect of Noise

This section implements OPDEC with input and/or state noise added.
This is done for all the sample rates selected. The average strengths
of the noises added in either case (input noise or state noise) are
.5, 1.0, 1.5 and 2.0. The sampled output responses, for all selected
sample rates, fell into 3 categories. They are stable, conditionally
stable and unstable. Conditionally stable means the output is varying
around the final value and the output is never larger than it would be
when no noise is added. Each section has a table that consolidates the

output result.

Adding Input Noise

In this section, noise is added eleven times to the input while it
is being input into the true system. What one would expect is that as
the average value of the input noise is increased, the output response
would become worse. This can be seen in Fig 17 and 18 which have
three plots per figure at tﬁe same sample rate with different average
input noises. Table 4 shows the effects of input noise on the sampled

output at all the selected sample rates.
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TABLE 4
Output Responses With Input Noise Added

SAMPLE TIME SAMPLE TIME OF OUTPUT RESPONSE WITH INPUT

OF CONTROL _INPUT NOISE NOISE STRENGTH OF 1/K
5 1.0 1.5 2.0
4 .0036 S s s S .000416
.085 .0077 S S s s .00925
.113 .0102 s s cs cs  .10664
.152 .0138 cs cs cs cs  .32356
.182 .0165 cs cs cs s .10714
.214 .0194 cs cs cs cs  .0093
.231 .021 cs cs cs cs  .10646
.5 L0454 cs cs Us Us  .00931
.623 .0566 us Us Us US  .0000355
.835 .0759 cs cs Us US  .000423
.954 .0867 cs Us Us Us  .09551
S - STABLE

CS - CONDITIONALLY STABLE
US - UNSTABLE
From Table 4 and the control input plots in the previous section,

one notices a trend. It seems the effects of input noise depends upon
the magnitude of the control inputs. This can be seen in Fig 19 which
shows the sampled output with input noise added at sample rates of .085
and .182. The output response at the "poorer conditioned" sample rate
(.085) is better than the response at the sample rate of .182. This is
because of the magnitude difference between the respective control inputs.
It seems the larger the control the less sensitive the output response
is to input noise. It would then be expected that the output response
at the sample rate of .835, would be insensitive to input noise because
of its large inputs relative to the optimal sample rate (Fig 16).

Fig 20 is the output response with input noise added at a sample rate
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of .835. This shows that the effects of input noise on the output is
not solely determined by the relative magnitude of the control inputs
or the condition number before the addition of the noise. It shows
that the sample rate also effects the robustness of a system that has
input noise added. Fig 21 is an example of the control inputs with

input noise added, at a sample rate of .113 seconds.

Adding State Noise

In this section, noise was added to all the states after they had
been updated one sample step. This is a simplified simulation of the
influence of incorrect state estimation from a Kalman filter in the closed
loop controller. The addition of noise occurs just before the next
output prediction. What one would expect is when the average strength
of the noise is increased, the output response becomes worse. Fig 22,

23 and 24 each have three plots per figure at the same sample rate with
different average noises co;rupting the states. These figures verify
our expectations. Table 5 shows the effects of state noise on the

sampled output at all the selected sample rates.
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TABLE 5
Output Responses With Noise Corruption of the States

CONTROL SAMPLE OUTPUT RESPONSE WITH STATE

TIME NOISE STRENGTHS OF 1/K
.S 1.0 1.5 2.0

.04 cs Cs CS cs .000416
.085 S Cs cs (o] .00925
.113 S S Cs Cs .10664
152 Cs cs Cs cs .32356
.182 Cs cs Cs CS .10714
.214 Cs cs Cs us .0093
.231 Cs cs cs Us .10646
.5 cs cs us us .00931
.623 Cs Us us us .0000355
.835 Cs cs Cs us .000423
.954 Cs cs Ccs cs .09551

S - STABLE

CS - CONDITIONALLY STABLE

US - UNSTABLE

From Table 5, one notices that the stability of the output, when
noise is added to the states, is a function of sample rate. With faster
sample rates, the system is able to correct the error induced by the
state noise. The condition number is also a factor as seen in Fig 25.
The output associated with the "poorer conditioned" sample rate (.214)
18 not as good as the output at the sample of .182. To best combat
state noise corruption, one would like to use OPDEC at a fast sample
rate that has a relatively good condition value. For the model used,

a sample rate of .113 seems to have the best results (Fig 22).

Input and State Noise Added

This gsection concerns itself with the addition of both input and

state noise. Looking at Tables 4 and 5, and trying to anticipate which
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sample rate would give the best output results when both input and

state noise is added, one would probably choose the following sample
rates of .04, .085, .113, .152, .182 and .231. After a multitude of
computer runs, implementing OPDEC with both noises added and at all the
selected sample rates, the expected sample rates show the best robustness.
Figures 26, 27, and 28 show the sampled output with both input and state
noise added, and as one expects, .1l13 is the most robust.

This section has investigated the best way to combat noise in a
system when using OPDEC for control. The conclusion appears to be, to
run the system at a fast sample rate that is also well conditioned. The
system’seems to be able to correct the induced errors caused by noise
when it is at a faster sample rate. In effect the errors can be
"negated" before they significantly degrade the system response when

operating at the faster sample rate.

Effects of Model Mismatch

The program that implements OPDEC also has the option to use a
perturbed model. This perturbed model can be used in either the predic-~
tion phase, control phase or both phases simultaneously. A mathmatical
model can only approximate a system's response, but this mathmatical
model is used to try and control the system. Since the model is in
error the controller must be able to cope with this error without causing
the system to go unstable. The perturbed model analysis in this section
tries to simulate these model mismatching errors. Using this perturbed
model analysis enables a person to see which phase (prediction or control)
is the most sensitive to model errors.

To generate the "perturbed model" the basic fourth order model

eigenvalues are shifted in the model versus the "true system". The

reasons for perturbing the eigenvalues instead of the Hankel matrix
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perturbations are not well understood. These perturbed eigenvalues
are then used to create the perturbed model. Specifically, two perturbed
models are used in the section to demonstrate robustness characteristics

of OPDEC. The transfer function for the two perturbed systems are:

10% -perturbation

+ 8474

s44+1.6653+314.1524360.65+8474

EIGENVALUES

-.605 + § 5.4
-.605 + § 5.4
-.225 + § 16.94
-.225 + § 16.94

15% perturbation

+ 8285

§44+1.6953+340.65244085+8285

EIGENVALUES

-.6325 + § 5.1
-.6325 - § 5.1

-.2125 + § 17.71
-.2125 - § 17.71

\

OPDEC's program was then implemented at all the selected sample
rates, using the perturbed model in the following fashion:

1. The perturbed model was used in the prediction phase and the

true model was used in the control phase. (False prediction,

true control)

2. The true model was used in the prediction phase and the

perturbed model was used in the control phase. (True prediction,

false control)

3. The perturbed model was used in both prediction and control

phase. (False prediction, false control)
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The sampled output responses, for all selected sample rates, were stable.
According to Reid (Ref 3) the norm of the difference between the
true Hankel matrix and the error Hankel matrix (E = Hy - Hg) gives an
indication of the stability of the output. Tables 7 and 8 show the
selected sample rates, the condition number, the norm of the true Hankel
matrix ||H¢||, the norm of the difference between the true Hankel matrix
and the error Hankel matrix, ||E||, the norm of the E matrix divided by
the norm of the true Hankel matrix, and the condition number times this

value for the 10% and 15% error models used.

TABLE 6

10% Perturbed Model

DELT K Haell Llell Hel[/|ae]] x1e][/]]8e]]
.040  2403.555 .652  .078 .120 289.085
.085  108.102 1.562  .401 .257 27.754
.113 9.055 1.566  .553 ©.353 3.197
.152 3.091 1.718  .559 .325 1.006
.182 9.334 2.086  .937 .449 4.191
214 107.511 2.366  1.121 474 50.957
.231 9.393 2.406  .874 .363 3.412
.500  107.367 4.001  2.543 .635 68.227
.623  28151.136 2.012  2.941 1.462 41155.396
.835  2363.574 1.35 .91l .675 1594.370
.954 10.470 .836  .682 .816 8.543
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TABLE 7

152 Perturbed Model

DELT K Hael L [IEll  [el1/]u 0] ReFE]]/] 8] ]
.040 2403.555 .625 .123 .189 454,633
.085 108.102 1.562 . 566 .362 39.147
.113 9.055 1.566 .750 .479 4.336
.152 3.091 1.718 .750 436 1.349
.182 9.334% 2.086 1.226 .588 5.486
.214 107.511 2.366 1.287 .544 58.498
.231 9.393 2.406 1.288 535 5.026
500 107.367 4,001 3.589 .897 96.315
.623 28151.136 2.012 3.141 1.561 43943.039
.835 2363.574 1.350 1.104 .817 1932.13
<954 10.470 .836 .903 1.081 11.314

Looking at the tables, at the same sample rate the norm of E
increases as the amount of perturbation increases. If the norm of E
is less than one, the output response is suppose to be stable. This
section will try and verify this theoretical result by looking at the
output response at all of the sample rates selected using the perturbed
models and seeing if the output is stable or unstable. Table 8 shows

the effects which the 10% perturbed model has on the sampled output.




TABLE 8

OUTPUT RESPONSE WITH

Output Responses With the 10Z Perturbed Model

TRUE PREDICTION FALSE PREDICTION FALSE PREDICTION

SAMPLE RATE FALSE CONTROL TRUE CONTROL FALSE CONTROL
.04 S : S S
.085 S S S
.113 S* S* S
.152 S S* S
.182 Sk us Sk
.214 us us us
.231 Us uUs S
.5 Us us Us
.623 us us us
.835 us us Us
<954 Us us S

* The time needed to reach the final value was greater than 20 times

the sample rate used.

The output responses using the 10 perturbed model, for sample rates
of .04, .085, .113, and .152 are in Figs 29, 30, 31 and 32 respectively.
From these figures one can see that the prediction phase is more sensi-

tive than the control phase to model error. But what is really inter-

esting is the output response is better when the error model is used

in both prediction and control phases.

Table 9 shows the effects the 157 perturbed model has on the

sampled output.
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TABLE 9
Output Responses With 15% Perturbed Model

OUTPUT RESPONSES WITH
TRUE PREDICTION FALSE PREDICTION FALSE PREDICTION

SAMPLE RATE FALSE CONTROL TRUE CONTROL FALSE CONTROL
.04 S . s S
.085 S S S
.113 Us us S
.152 Us us us
.182 Us us us
.214 Us us us
.231 Us us us
.5 Us Us us
.623 Us us Us
.835 us Us us
.954 uUs Us Us

S - STABLE

US - UNSTABLE

The models errors are almost too great to overcome when the perturb-
ation is 15X. The output responses using the 15% perturbed model for
sample rates of .085 and .113 are in Fig 33 and 34. These sample rates,
as predicted by Table 7, are stable. It seems that the norm of the
difference between the two Hankel matrix and the error Hankel matrix

if less than one indicates stability.

Combination of Noise and Model Errors

This section investigates the efforts o§ input and state noise
when erroneous models are used to control the system, OPDEC's program
was then implemented with the perturbed model used in both prediction
and control phases with just input noise, then just state noise, and
finally both input and state noise. The justification for implementing

OPDEC in this fashion is that one will not be using different models for
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the production phase as compared to the control phase. The same model
will be used in both phases.

OPDEC's program was implemented using the 10% perturbed model,
input noise was added first, then state noise, then the combination of
the two noises. This was done for all the sample rates selected, except
the sample rates which by Table 4 were unstable. Shown in Figures 35
and 36 is the sampled outputs using the 10 perturbed model with input
noise added. The sampled outputs with state noise added is shown in
Figures 37 and 38. The sampled outputs with both state and input noise
added can be seen in Figures 39 and 40.

As expected, the faster sample rates which have larger controls
are insensitive to input disturbances, but the addition of state noise
has a more severe effect on the output. The severity is great enough to
make the output response worse than the response at a sample rate of .113.
When using a perturbed model, the influence of state noise becomes more
severe. This is because of OPDEC's sensitivity in the prediction phase

of its control law.

Hankel Matrix Sensitivity Analysis

The use of OPDEC requires working with the Hankel matrix. Since
the Hankel matrix is such a vital part of OPDEC, the analysis of the
Hankel matrix under variations in the system pole/zero structure will
give some indication of the overall robustness of OPDEC. Not only is
the Hankel matrix an intrinsic part of control computation in OPDEC,
it is also an important part in the selection of an "optimal" sample
rate. The approach taken in this report is to see how sensitive the
Hankel matrix is to pole and zero placement.

First the dominate pair of eigenvalues in the fourth order system
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(-.25 + 3 15.4) are perturbed slightly, then combined with the two other
original eigenvalues to come up with a new perturbed system. This system
is then used in the first FORTRAN program (Appendix A) to see the effects
which pole placement has upon the condition number. The resulting con-
dition number versus sample rate plot is then compared to the original
system condition number plot. The original system condition number plot
is again shown in Figure 41. Figure 42 and Table 10 show the perturbed
eigenvalues used in the sensitivity analysis. Table 10 also has the

optimal sample rate and one over condition number for each perturbed

eigenvalue.
TABLE 10
MAXIMUM RECIPROCAL
PERTURBED "OPTIMAL" CONDITION NUMBER @ DAMP ING
EIGENVALUE SAMPLE RATE "OPTIMUM" SAMPLE RATE Wn RATIO
-.25 + j 15.4! .152 .32356 15.402 .016
-.25 + 3 20 .118 .23109 20.001 .0125
-.25 + j 17.4 .136 .2881 17.401 .014
-.25 + 3§ 12.7 .174 .2963 12.702 .019
-.25 + § 10.0$ .215 .21664 10.003 .024
-.05 + § 15.4 .151 .3581 15.4 .0006
-.15 + 3 15.4 .152 .3399 15.4 .0097
-.35+ 3 15.4 .152 .305 15.4 .0227
-.45 + 3 15.4 .152 .2877 15.403 .0292
-.2 + 3 12.32% 177 .2891 12.321 .016
-.3 + ] 18.48* .128 .2585 18.482 .016

! The original system

* The perturbed system created using these eigenvalues has the
same damping ratio as the original system

$ Local optimal sample rate only; i.e., there is another peak

Looking at Figures 43 thru 52 one notices a trend appearing. When

the real part of the eigenvalue is perturbed and the imaginary part is
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not, the effécts upon the optimal sample rate is minimal. Conversely,
when the real part is not perturbed and the imaginary part is perturbed,
the shift of the optimal sample rate is considerable. This seems reason-
able because the frequency of a system is very dependent upon the
imaginary portion of the eigenvalues in a lightly damped system. This
analysis shows the Hankel matrix condition number being sensitive to
the frequency, Wn, of a system, but insensitive to the damping ratio of
a system.

The next area of concern is the effect a system zero would have on
the Hankel matrix. A system zero is added to the basic fourth order

system giving us a new system, shown below.

(S+=)8611.7698

5441.6534274.07552+279.096+8611.7698

Alpha is varied from one to minus one to see the sensitivities in
the Hankel matrix. Table 11 shows the optimum sample rate and the corre-

sponding reciprocal condition value for various values of alpha.

TABLE 11
"OPTIMAL" RECIPROCAL

ALPHA  SAMPLE RATE  CONDITION NUMBER
1.0 147 .6234
.3 .156 .6336
.2 .156 .6352
0.0 .156 .6395
-.2 .156 .6438
-.3 .156 .6456
-1.0 .153 .6526

The original system condition number plot is again in Figure 53.
For alpha's of .3, 0.0, and ~.3, plots of the reciprocal condition number

versus sample rate are shown in Figures 54, 55 and 56, respectively.
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The most obvious change is the value of the maximum reciprocal condition

number. The value has about doubled from .3 for the no zero system to .6

for the system with a zero. Also observed is that variation on the optimal

sample rate itself is very small and it changes very little as the zero
shifts, even when the zero is in the right half plane. The system is
then a nonminimum phase system, but there seems to be little influence
upon the characteristics of the conditioning of the Hankel matrix. If
anything, the maximum reciprocal condition number is increasing in
value as we proceed further into the right half plane! If the condition
numbers value is any indication of robustness, this indicates that a
system with a zero will be more robust than the same system without a
zero. From this analysis, using a lightly damped system, the Hankel
matrix is sensitive to the pole locations of the system, but it is

relatively insensitive to the location of the system zeros.

Minimum Phase versus Nonminimum Phase

This section examines whether or not a nomminimum phase system
will present any problems when being controlled by OPDEC. Two systems,
one being nonminimum phase, the other minimum phase, are implemented
under conditions of model errors and input and/or state noise. The

two systems are:

System A (Minimum Phase)

8611.7698(s+.3)

S441.653+274.075524279.0965+8611.7698

System B (Nonminimum Phase)

8611.7698(s-.3)

$441.653+274.075524279.0965+8611.7698
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From Table 11, both System A and B have an optimal sample rate of
.156 seconds. Their sampled outputs and control inputs at the optimal
sample is shown in Figures 57 and 58. Surprisingly, the sampled outputs
and control inputs are exactly the same for a minimum phase system and
a nonminimum phase system. -This is caused by the zeros in both systems
having the same magnitude. Input noise, then state noise, and finally
input and state noise are added to the system. The sampled output with
input noise added at a sample rate of .156 can be seen in Figure 59.
Again the output is exactly the same for a nonminimum phase system as
for a minimum phase system. This fact is present when state noise is
added and also when both types of noises are added. Other sample rates
are tried and the outputs are identical for system A and B. Similar
to previous results, a faster than optimum sample rate gives better
robustness characteristics when noise is disrupting the system (Figures
60 and 61).

The next area of concern is if system A and system B have the same

properties when an error model is used for control. The two 107 perturbed

models are:

System A'

8474 (5+.3)

S4+1.6653+317.152+360.65+8474

System B'

8474(s-.3)

S44+1.6683+317.152+360.65+8474

The denominator of the perturbed systems is the same as the previous 102
perturbed models denominator used earlier in this report. The output

response and control inputs when using the perturbed models to control

82




SONOJ3S NI 3WIL
08°2 ov'2 00°2 09°1 021 08°0 0¥°0

1 - 1

=
(=
o

€' - 44—t
mc
Jd0 NOILVDOQT QYEZ

B
00°s

30004 10¥INOT 3NYL
NOI1J103¥d 3n¥1
981°0 40 31B¥ Idkus

104100 03dUUS -

Fig. 57

0022~ 00‘2ce

- 00°21-
1ndiN0 a31d4dWYS
83

00*e-
SAMPLED GUTPUT WITH NO NOISE RDDED AT A

SAMPLE RATE OF .156 SECONDS

0°81

G




08°2 or°2

SONOJ3S NI 3WIL
091

€~ 44
ﬁ.

40 NOIZVDOT QuiIZ

3000 01800 3n¥L

NOILJI03¥d 3Nyl

$31°0 JO 31y INduys

8iNdNI T0YINDD

0¥ '0
SINANI TIQYINGD

08°'0

ﬁ'

02'l

09

£ ADDED AT A
Fig. 58

+156 SECONDS
84

CONTROL INPUTS WITH NO NOIS

SAMPLE RATE OF




SANOJ3S NI JWIL
08°2 0¥ 2 00°2 081 0z'1 08°0 0¥:0

L L L. L

Q
(=]
(=]

Fig. 59

£ - 44«
€0
d0 NOILVYDOT 0¥I?Z

0*2 -SI JSION J0
NOILVIAYA TYVANVLS

7300W TO¥LNOD 3NYL
ND]12103¥d 3Nyl

9S1°'0 40 31Uy 31d4WYS
1ndiN0 031duYs

00°'6¢

L]

00°'ie-

1NdiN0 0371dHYS

00'€el-

85

00°S-
113 SECONDS.

00°€

SAMPLED OUTPUT HWITH STATE NOISE RODED AT A

SAMPLE RATE OF

qo*1t




AIR FORCE INST OF TECH WRIGHT=PATTERSON m M P76 1271
ROBUSTNESS SII%:ES OF OUTPUT PREDICTIVE DEAD=BEAT CONTROL FOR W=efTC ('}
£ M KIRKWOOD

£0-A08S 709

OEC 79
UNCLASSIFIED AFIT/6A/EE/80-1

L8
2’? ii Eiii




|
N
oo

FE

CEFEERER
EEE
-
N
S

(44 3
3
3

=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.




[
&m0 © s
O w \n > "

R A
AL
3 1§~
i Auv o

a” -
g 2 .
/7] [ 3]

28

n

[ =]
o
"o~
(7p]
00
o=z
Y |
(&
Wi
(]
oz
[
“w
=
-t
-
[}
[ ]
o
Q
«
‘o
0°0y ) : > ‘c?
. 00°02 00°C  00°02- ©00°'0y- g gg-°
iNnding a37dUys
SAMPLED OUTPUT WITH INPUT NOISE RODDED
SAMPLE RATES OF .113 and 156 SECONDS.AT
Pig. 60




(i

538, 8
4 l i z “
- Q
g B <
(= Fo] blN.
2¢
& 8
"o
[{p]
ol
0=
b oo
(& )
1]
@w
o<
N.O-(
“w
=
-
(=]
Ry
[~ ]
Q
By
(=]
8
do‘or o©0°02 00°0 00'02- 00°Cy- 00°09-"
INd1NO0 G37dUHS

SANPLED OUTPUT WITH STRATE NOISE RODED AT
SAMPLE RATES OF .113 and .156 SECONDS

87

Mig. 61




the true system are identical. Figure 62 shows the sampled outputs at
sample rates of .113 and .152 using this perturbed model.

From this analysis, OPDEC has no problems controlling a nonminimum
phase system. Also, the robustness of OPDEC is not degraded when this
type system is being controlled. OPDEC is fairly insensitive to zero
placement.

This insensitivity to the system zero location was interesting
enough to try and control system B using system A and A' as the perturbed
model. When system A was used, the output response looked exactly like
the original dead-beat response (Figure 57). When system A' was used,
the output response looked exactly like Figure 62. The next step was
to try and use the original fourth order SISO system with no zeros to
control system B. The systems response was unstable. What this analysis
shows is that the zero location is not a factor in using OPDEC as a

regulator.

Discussion of 4th Order Results

From this fourth order analysis, we see that sample rates faster
than the optimum have better output characteristics when noise 1is
corrupting the system. Also, some of the faster sample rates seem to
have better robustness characteristics overall. The condition number
is a helpful guide in selecting general areas of sample rates where
the system is more robust. Using the condition number to find a
specific "optimal" sample rate, without doing the closed loop robustness
simulation studies, is definitely the wrong approach. Robustness and
closed loop system performance is just too complex of an issue to hope
that there would be a single panacea for all aspects of the prodlem.

Areas of high sensitivity of OPDEC seem to be the poles of the
system being controlled, but OPDEC appears to be insemsitive to systems
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zero location. As far as the location of the poles are concerned,
OPDEC is more sensitive to the "frequency" of the pole as compared to

the damping ratio.

Procedure and Results with 10th Order SISO System

In this section, OPDEC is implemented using the 10th order system
discussed earlier. Figure 63 shows the reciprocal condition number
versus sample rate. The "optimum" sample rate is .523 and the reciprocal
condition number is 0.000158. The sampled output at a rate of .523 is
shown in Figure 64. The output is very oscillitory but, as the theory
states, in ten steps of the dead-beat control the output and the states
are brought identically to zero.

What was tried at this point was to control the 10th order system
with a smaller ordered system. The full ordered Hankel matrix was
created (10 X 10). Then an option was exercised in the program that
lets the user reduce the size of the Hankel matrix just before it is

inverted for use in closed ioop control. Then the reduced order Hankel

matrix is inverted and used to determine a control input using OPDEC's
control law. When trying to control the true 10th order system with a
9th order system the output for sample rate of .523 is showm in Figure 65.
For the same sample rate the order of the Hankel matrix was reduced to

an 8th order system. The sampled output can be seen in Figure 66.

Some other sample rates were chosen and the same procedure was used.

The outputs for all the other selected sample rates went umstable,

even for the 9th order system controlling the full 10th order system.

The condition number is helpful in determining a sample rate in which

a8 reduced order model is being used to determine control inputs.




0.70

ONE OVER CONDITION
MADER VS oReLE
: mATE

0.50
SAMPLE RATE

o.‘s

0.40

oz 0 ‘o els  rolo
o-01® & NOILIGNOD U!AO 3"0

..

O ONE OVER CONDITION NUNBER V8 SAWPLE RATE

rg. 6

. T
TP URERRNRN Wy ¥ ) il 20 . S il . m 5



8
~
8
w
(@]
| g
(s
f‘gg
-3
of
w
8%
~—— .’;UJ
- E
-lae . - ’-
- - '-g'
-] N
~— _S
| —emea e
. g
od'0ost  00°0¢ 00°0 00°08-. 00°091- 00°0¢2-°
;O1n 1Ndino0 Q31dWYS
BANPLED .gu!;rg; HLIN 4O NOISE AODED AT A
u‘o 4




7.00

|

T

s.oo

4'00

3.00
TIME IN SECONDS

r
2.00

1.00

od*or2  00°09f  00°08 00°C 00°08- 00°09!
OIx 1Nd1N0 0371dHYS:

SAMPLED OUTPUT WITH NO NOISE ROOEQ With A
10th Order True System Being Controlled With A

9th Order system.

93 Mg. 65




@

2.50 3.00 3.50

2.00

¥

L

1.80

TIME IN SECONDS

|

1.00

0.50

.'_~
0°09

00°0r
nlix

00°02 00°0  00'02- 00°0p-

lﬂdlﬂO 0371dWHS

g.

" SAMPLED OUTPUT USING AN 8th ORDER SYSTEM TO

CONTROL A 10th ORDER SYSTEM.

it de oy

ﬁ.‘. 66




('

IV Conclusions and Recommendations

From this analysis one can see that the sample rate can enhance
the robustness properties of OPDEC. The sample rate which minimizes
the condition number does yield controls with good magnitude properties.
If anything, this fact causés the response to be more sensitive to
input noise if the strength of the noise is held constant. Thus, the
80 called optimum sample rate is not necessarily the same sample rate
that gives the best enhancement to OPDEC's robustness.

The group of sample rates which has good robustness properties
when input noise was the only disruptive element is not the same group
of sample rates that exhibit acceptable robustness when model mismatch
exists. This means that the overall characteristics of OPDEC can be
tailored for specific operating environments, by just selecting the
proper sample rate. The problem then becomes one of selection of
the proper sample rate to "tune" the algorithm for the particular set
of noise environment and model errors which is expected to be encountered.
There does not appear to be an analytic method for this proper sample rate.
Rather, the robustness performance appears to be an issue which is best
snalyzed through simulation studies.

OPDEC's sensitivity to the frequency of the system and its opera-
ting sample rate could be caused from the selection of the system to
control. It is recommended that future studies see if OPDEC has the
same characteristics when implemented on other system, particularly on
those which are not so lightly damped as the one studied here. Another
srea needing further investigation is in the optimization of sample rate.

The flexibility of OPDEC seems to make it a viable control technique.
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Appendix A

Condition Number Program

This Appendix contains the computer listing and a users guide for

the program that finds the optimal sample rate. The optimal sample rate

occurs when one over the condition number is a maximum. This program

uses many of the same subroutines as the program that implements OPDEC

(Appendix B). To save space, these subroutines will be discussed in

Appendix B.

The user must supply the program with the following information on

data cards. All data is read in using an unformated read statement.

1. System size n, n is an intiger value and must be less
than or equal to ten.
2, Starting sample rate, DELT.
3. Final sample rate, DF.
4. A, B, and C from state matrix equation
x = Ax + Bu
y(t) = Cx(t)
A, B, and C re all n by n matrices and must be discret-
izable over sample rate range user supplied. A must also

be invertable.

Below is a brief outline of the steps the program follows:

1. Reads in data.

2, Sets DET = 0.001 and counter IS = 0.

3. Increments starting sample rate,
DELT = DELT + DET

4. Checks to see if DELT > DF; if so, goes to step 12.
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10'
11.

12.

13.

14.

15.

Discretizes A and B at sample rate DELT.
Increments counter IS = IS + 1.

Creates Hankel matrix.

Finds Singular values of Hankel matrix.
Find one over condition number,

YS(IS) = Q(n)/Q(1)

Q(n) is minimum singular value,
Q(1) is maximum singular value.

Sets TSS(IS) = DELT.

Go to step 3.

Search teciprocal»condition number array (YS) for
maximum reciptrocal condition number and output this
Find the sample rate at which the maximum reciprocal
tion number occurs and output this number.

Plot array YS vs array TSS.

Stop.

number.

condi-

The program uses two subroutines from the IMSL subroutine package.

The two routines are:

1.
2.

LINV2F

LSVDF

Description of Subroutines 2

Subroutine COND(F2,G2,C,N,IDIM,Q)

This subroutine takes the discretized sistem and creates the Hankel

matrix from the observability and controllability pairs.

singular value decomposition of the Hankel matrix. The siﬁgulat values

are then output in the subscripted array Q.
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Inputs
1. F2, G2, C, discretized system.
2. n, system size.

3. ID1U, Initial dimensionalization.

1. Q, n by 1 array containing the ordered singular values

Q(1) maximum singular value,
Q(n) minimum singular value.

Subroutines EFT, HGRAGH, and VGRAGH are described in Appendix B.
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PROGRAY THESIS(INPUT, OUTPUT, TAPES= INPUT,T&PEG‘OUTPU[,PLOT)
OIMENSION AT(10,10)98T(10,10),CT(10,10)

DIMENSION Q(10)

DIMENSIION TSS(2500) ,YS(2500)

DIMENSION IYSS(17)

OIMENSION FT(10,12),6T7(10,10)

DATA
OATA
DATA
DATA
DATA
DATA
OATA
IS=0

IVSS(1)/720HONE OVER CONDITION 7
IrSS(3) 7294 NUMSER VS SAMPLE ’
IY¥YS3S(5)/20H RATE /
IYSS(7)/720H /
IYSS(9)/720H SAMPLE RATE /
IVSS(11)720HONE OVER CONDITION #/

IYSS(13)/40HONE OVER CONDITION NUMBER VS SAMPL:I RATE/

C READING IN SIZE OF MY SYSTEM N
C.N MUST BE _ESS THAN OR EQUAL TO 10
READ®, N

IDIMN=1)

IPAS=

C READ IN INITIAL DELT
REAO*,0€ELT

: DET=0.001
C READ FINAL T
READ®, J)F
READ*y ((AT(IyJ)yJ=1,N)I=1,N)
READ®* 3 ((BT(IgJ)yJ=1,N) I=1,H)
READ®, ((CT(IsJ)yJ=1,N)yI=1yN)
CONTINJE
BELT=DET+NELTY
IF(DELT.GT.OF) GOTO 96
IS=IS+L

12

IPAS=

I2A5+1

C GENERATE My DISCREYE F AND 6 MATRIX FOR TRUTH AND MODEL"

Mi=55

CALL
CALL

EST(AT 3BT 4Ny IOIMoFT yGTyML,0ELT)
COND(FTsGT,CTyN, IDIM,Q)

TSS(1IS) =DELT

YS(IS)=2(N) /0(1)

IF(IPAS.GE.10) IPAS=0

IF(IPAS.NE.0) GOTO 12

PRINTE#,* = :
PRINT®#,” SAMPLE RATE IS ", TSS(IS)
PRINT®, =

PRINT®,” ONE OVER CONODITION NUMBER IS™
PRINT®, " 1/K=*,YS(IS)

6070

12

CONTINJE
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B8B=0.
00 197 I=1,1S,14
IF (YS(1) 4GEBB) GOTO 290
GOTO 239
{ 298 88=YS(D)
) X=1
289 CONTINJE

197  CONTINJE
PRINT®,*“MAX ON OVER CONDITION * =,88

PRINT®, AT SAMPLE RATE OF *,TSS(K)
CALL PL orv (0 09“00 ,'3’

CALL H3RAPH(TSS, YS,;ISy1YSS,1,0,1)
CALL P.OTE(M1)

sToP

END .

.............................

SUBROUTINE COND‘F2Q62’CQN'I°I"’O,
DIMENSION F2(IDIM,IDIM),G2(IDIM,IDIM)
DIMENSION C1¢10,10),62¢(10,10),C03(01,10) ,CH(10,10)
DIMENSION CS5(10,10),C(IDIN,IDIM)
DIMENSION RC5(10,10)
DIMENSION P(10,10)
DIMENSION G7(13,10),Q€10)4NK(20),B(10,10)
CALL COPY(C,CSsN,IDIM)
' CALL CIPY(G2,GT4N,IDINM)
( C FIND HANXKEL (IMPULSE RESPONSE) MATRIX
00 1115 J=1,N,1
C2(1,J)3C(1,0)
Chtly1)=G71Jy2)
114% CONTINUE
00 1113 I=2,N,1
CALL HJLT(CS.FZQCI:i,N,N,IDIN)
CALL HJL'(FZ.G?,CJ'N,N:IQIDIH)
00 111% J=1i4N,4
C2(IyJ)=L1(1,))
C(JyI)=2C3(Jy1)
1114 CONTINJE
CALL COPY(C1,CS5,N,IDIN)
 CGALL COPY(C3IyG7yN,IDIN) ) !
"4413 CONTINVE . :
CALL "ULT(CZ,CQ,RcsyNgﬂgN’IDIH’ ) -
IA=IDIY '
1067 =N :
CALL COPY(RCS,P,N,I0IMNM) 4
CALL LSVDF(PyIDIMsNyN By ~15=15Q9UKyIER)
i
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c....‘....OO.......‘...’0050'.0'000‘.....“.‘..".‘..O.‘.....

c
c
SUBROUTINE EFT(A,B,N, I0IM,ALB5,M,0ELT)
€ THIS SUBROUTIMNE FIND MY DISCRETE SYSTEM F AND 6
C FROM A AND B, A IS NXN AND 8 IS NXN
C OELT IS MY TIME INCREMENTy AND M IS THE NUMSBER
C OF ITERATIONS IN MY SUM I WANT TO GO«
DIMENSION B(IDIM,I0OIM) ,A(IDIN,IDINM)
OIMENSION A&L(IOIM,IDIM),BE(IDIM,IDIM)
OIMENSION A2(10,1C) yA3(10,13)
DIMENSION AI(10,10)
DIMENSION A5(10,10) ,AINV (10,10)
DIMENSION 84(10,10)
DIMENSION P(10,10) >
DIMENSION WKAREA (200
C SET UP IDENITY MATRIX
CALL COPY(A,PyN,I10IM
IA=IDINM
JOGT=N
00 1902 I=1,IDIM,1
D0 1003 J=1,Nyt
A1(I,J)=0,0
Ab(IyJ)=0.0
1003 CONTINYE
AI(I,I)=1,.0
1002 CONTINUE
C FINE Q SUCH THAT F=Q+I AND G=0'AINV'B
C6=1,1
‘DET1=1.0
00 1111 I=1,M,1
DET1=DET1°*0ELY
C6=C6*I .
ABLE=DET1/C6
CALL MULT(AI,A9A2,NyN,N, IOIM)
CALL COPY(A2,AI,N,IDIM) -
CALL MULTXK(A2,ABLE A34NyN,IDIM)
CALL ADIDINGCA3,AL4AS,NeN,IDINM)
CALL COPY (AS5,ALyN,IDINM)
1111 CONTINUE .
Cc FIND AINYV -
CALL LINVZF(A,N,I‘,AINV,IDGT’"KAQEﬂ,IER,
CALL MULT (A4,AINV,BhLyNyNyNyIDIM)
CALL MULT(BL,B, BS,N,N,i,ICIN’
00 10061 I=1,N,1 .
AG(II)=AL(IyI)*1.0
4001 CONTINUE
CALL COPY (A,PyN,IOIM)
C Ah IS MY F.AND 85 IS NY G
RETURN
END
[ A

COSISRRLIRIGREISSITIIIIIINPSBI RIS RSV R USSR IBVISLUNIGIBIGSRE S .




SUSROUTINE PREOICT(FL,CyXyNeIDIN,Y)
C THIS SUBROUTINE DOES THE OUTPUT PREOICTION
C PHASE OF OPODEC,

DIMENSION FL(IDINM,IOINM)

OIMENSION X(IDIM,IDIM) Y (IDIMLIDINM)

OIMENSION 21110,10),22(18,10),R(10,10)

OIMENSION C(IDINM,IOINM)

No=i

WN7aNeN=1 .

00 196 I[I=N,NT7,1

CALL MPOWP(F19IIyNy,IDIN,R)

CALL MULT(RyX9Z1yNyNy2,I0IM)

CALL MULT(C 92192291 9Ng1,1DIN

YiNGg1)=222(1,1) -
R ;
196  CONTINUE
RETURN
. END
c
c

COSIIVIBIIIS OIS NPT SIS IITSVSILUIT S BELEBIRISIINGNERRERIRIY

4]
SUBROUTINE ADDING(A,8,C,NyM, IOIN)
C N IS ROW, M IS COLUMN
C THIS ADDS TWwO MATRICES OF SAME SIZE
OIMENSION A (TIOIM4I0IM),B(I0IM;IDINY,C(IOIN,I0IN)
D0 906 J=1,M,1
DO 906 I=i,Ny%

Cl(I )= (I,J)+8(I,J)
906 CONTINUE
RETURN
END
c
c..". SU USSPV LSS PT ISP IR ‘”.“." (2 XX XL FrT Y Y TrYYYY IXYTIYY
¢ .
[+

~ SUBROUTINE COPY(A,8,N,IDIM

C MUST BE A SQUARE MATRIX

€ COPIES A INTO B

OIMENSION A (IDIM,IDIM),8 (IDIN,IOIN}
00 1400 JS=4,N,1

D0 1100 JT=4,N,1

B(JISyJT) A LISy JT)
1100 CONTINUE
RETURN ' .
END . :
¢
COGSISS0SESI PR IISIILIINISIISSNIIINININNISNINISLININIS SIS
]
e
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SUBROUTINE PRNMA (A Ny M, I0IN)
HIS SUBROUYTINE PRINTS OUT ANY SIZE MATRIX
IS THE NUMBER OF COLUMNS
IS THME NUMBER OF RONS
OIMENSIIN ACIDIN,IDIMY
00 1112 J=1,N,1
WRITE(S,111)(A(JyI)sI=tyM,0)
111 FORMAT(™ “,10(2X,EL18.4))
1142 CONTINUE

cY
cn
CN

RETURN
END
c
(ST IRI I YT YT Y YIPRLY TPV YR RY VT VINEYPINY T TIPYVNTIYINTY LYY YN
[~
c

SUSROUTINE MPOWP (MyNP ysNy I0IMoR)
C FINDS R=M**NP
OIMENSION M(IDIM,IDIM),R (IDIM,IDIM)
OIMENSION R1(10,10),R2(18,10)
00 193 J=1,I0IMy1
00 19% I=1,IDINM,14
Ri(I,J)=0.0
R2(I,J)=0,.0
494  CONTINVUE
R1(JyJ)=1.9
193 CONTINUE
00 195 JJ=1,NP,i
CALL MULT(M4RL,R2yNyN,yNyIDIM)
CALL COPY({R24R1yN,IDIM)
495 CONTINUE
CALL SOPY(R2,RyN,IDIM)
RETURN A
END . '
:
c"..‘..‘.’.."‘IQ.’....C‘.Q.QOOO"0‘.0...0."“'.'."

c
¢ :
SUBROUTINE NOIZE (RMSNOTS, QUTMEAN, WN)

c.".."‘5".I.""O“.QO.‘..'.O‘.“‘
C SUBTOUTINE NOISE CALCULATES THE VALUES OF THE MEASUREMENT NOISE
‘G COMPONENTS USING A RANDON NUMBER GENERATOR MODELLED AS 3AUSSIAN
CORIG IR IRE IR BISIGISRBN 2305300 .

GAUSS=0,

00 333 I=1,12,1

GAUSS=GAUSS+RANF (210)
333 CONTINUE

GAUSS=GAUSS =5, *OUTHEAN

WN=GAUSS®RNSNOTS

RETURN
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SUSROUTINE HGRAPH (XY yNy ICH)NOyNPyNS)

C IF ID(1)=),30C BOX IN UPPER RIGHT CORNZK
C IS NOT PLOTTED

10

20
25

10

20

OIMENSION X(1),¥(1),ID(1) & IF(ND.EO.2) GO TO 30

IF (ND.LT.G) GO TO 1¢

CALL SCALE(XeTegNy1) $ CALL SCALE(Y9So9Ny1)
CALL PLIOT(8+%98,9=3) § CALL PLOT(Ce911.,53)

CALL PLOT(=1:3591:35%,3)

CALL PLOT (=701591e3%92) & CALL PLOT(=T7.15,9.65,2)
IF(IND(L) «€ENCUI) GO TO 25

CALL PLOT(=7,05,%.5%,3) g CALL PLOT(<=7.05,7:.55,2)
B0 20 I=1,7,2

CALL SYMBOL(I®e1-50997¢85 5007,10(1)490.520)

CALL PLOT(=7.0597455,3) € CALL PLOT(=F.0597:¢55,2)
CALL PLOT(=660559.5%,2) $ CALL PLOT(=7.,057945542)
CALL PLOT(=7,154G,h%,3)

CALL PLOT(=1,35,4,€5,2) S CALL PLOT(=1:.35,1.35,2)
CALL SYMROL (=6eB™ 91015 5¢19I0(13)3369& )

CALL AXIS(=1:855241,ID(2)3=2097¢99JesX(N2+1),,X(N+2))
CALL AXIS(=1e8392¢15I10(11)92095.9018CcpY (N+1),Y(NE2))
Y(N+2) ==Y (N+2)

XIN+L)=X(N*L) =2, 12X (N¢2) § Y(N*I,SY(N91)01035’7(N’Z.
CALL LINE(Y :XoNs219NPyhS)

XIN+L)I =X IN#L) 42, 12X (N#2) & Y(N+1L)=Y(N+L1)=1,85%Y(N+2)
YI{N+2) ==Y (N +2)

RETURN $ END

SUBROUTINE VGRAPH (XY 3Ny ID9tiOsNPyNS)

OIMENSION X(1),Y(1),I0(1) S IF(NJ.ENe2) GC TO 30

IF (NO.LT.G) 69 T0 1C :

CALL SCALF(Xyiue99Ny1) § CALL SCALE (Y97 e09Ny1)
CALL PLOT(8.590¢9~-3) ¢ CALL PLOT(G.911493)

CALL PLOT(=1,35,143%y3)

CALL PLOT(=7e1591435,2) & CALL PLOT(=7,15,9.65,2)
CALL P.OT(=1,33,9.H6%592) 3 IF(ID(1).EN. D0 GO TO 25
CALL PLOT(=14437945%93) & CALL PLOT(=344599.55,2)

DO 29 I= 1,7,2 g

CALL SYMROL (=315 99 eit=I% 4169 e¢0G79I0(I)574420)

CALL PLOT(=3,4599¢5593) § CALL FLOT(=3,04558.55,2)
CALL PLOT(=1,4L5,3,3%,2) ¢ CALL PLOT(=1,04%5,9.5592)
CALL PLOT(=1:3559:6552)

CALL PLOT (=1,3551.3%,2)

CALL SYMONL (=665 9141550 1,I0(13)5Gey2D)

CALL AXIS(-6.+.1.65,ID(E),-20.#.3,)..X(N#!).X(N#Z))
CALL AXIS(=6oiryle¢83,I0(11)920973990 o9 Y IN+1),Y(NS2))
K(N+L) X (N*1) 6,42 X (N¢2) $ YIN+1)aY (N+1)=1,85%Y (Ne2)
CALL LINE(X9Y9NyLoNPyNS)

X(N01’l*("01)'bo“‘X(N02) $ YIN®L) sY (N+1)+1,85% Y(Ne2)
RE TURN $ ENO
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OPDEC Program

This appendix contains the computer listing and a users guide for
the implimentation of OPDEC. The program reads in user supplied inputs
and generates the initial states, x(0). The next phase is the output
prediction phase. In this phase the current system state, x(k), is used
to predict the outputs in the future. This predicted output is then
used to calculate the next input, using OPDEC's control law. The input
is then applied to the true system to update the state vector one
sample step. This updated state vector is then used in the prediction

phase on the next cycle through the progran.

Program Inputs and Initial Conditions

The user must supply the program with the following data. All data,

unless specified otherwise, is read in using an unformated read statement.

1. A title to be used on the output plot. This title is usually
the sample rate the system is using. It is used to identify output
plots. The title is limited to twenty spaces and read in using an
alphanumeric format.

2. The program output contains two plots. One plot is of the
system output and the other 1; of the inputs calculated. Each
plot has a title box in the upper right hand corner. This program
has the option of drawing this title box or not. The next input,
therefore, is a switch variable. If this variable is less than or
equal to zero both title boxes will be drawn. If it is less than
one but greater than zero the title box will be drawm only on the
control iaput plot and not on the output plot. If the input is
greater than one, no title box will be drawn on either plot.

2t e i e e Bt o




3. System size n. n is an integer value and must be less than or
equal to ten.

4. A, B, and C from the true system state matrix equation

x=Ax+Bu

y(t) = C x(t)

A, B, C are all read in as n by n matrices and must be discretizable
at the users supplied sample rate. A must also be invertible.

5. Am, Bm, and Cm from the perturbed system state matrix equation

X=Am x + Bm u

y(t) = Cm x(t)

Am, Bm, Cm are all read in as n by n matrices and must be discret-
izable at the users supplied sample rate. Am must be invertible.
6. Sample rate DELT, which the system is to use. DELT is a real
number.

7. The program has an option of using a smaller model than the
system order, n, in calculation of the next input. This option

is the next input to the program, N6. This tells the program the
size of the Hankel matrix to use in the calculation of the closed
loop input. N6 is an intiger and must be less than or equal to
the system size, n, and greater than or equal to 1.

8. The next input is an intiger, and tells the program the number
of cycles to implement OPDEC's control law.

9. The next input is the standard deviition of the noise one wants
to add to all the states.
10. RMS is the standard deviations of the guassian noise added to
the input. If this value is less than or equal to sero, then no

input noise is added.
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11, The next inputs are three logic switches used in making the

program follow a path the user desires. The inputs are read in
using a logical format. The logic switches can take on two values:
a T (true) or an F (false). The first logic switch, SW1, if true
tells the program to use the true model in the prediction phase
of the program. 1If SW1 is false, the program uses the perturbed
model in the prediction phase of the program. The second logic
switch, SW2, if true tells the program to use the true model in
the control phase of the program. If SW2 is false the program
uses the perturbed model in the control phase of the program.

SW3 is the third logic switch. If true it will add random state
noise with a standard deviation selected by the user (Input 9).

If SW3 is false no state noise will be added.

After reading in the inputs, the program discretizes the true

system and the perturbed system using subroutine EFT. The next sections

are done sequencially in the closed loop control loop.

Prediction Phase o

This phase uses SW1 to select which model to use in the output

prediction. The output prediction is done by using subroutine PREDICT.

Also

done in this phase is to set up some titles to be drawn. These

title changes inform the user which model was used in the prediction

phase.

Control Phase

This phase uses SW2 to select which model to use in the control

phase. The output prediction is used to determine an input. This is

“ done
("

by using subroutine CONTR. There are also some additional title

changes, for plotting purposes, to inform the user on the output plots




which model was used in the control phase.

System Implementation

What is done in this phase is to take the input calculated, state
vector and apply them to the true system to update the state vector one
sample step. This is done by using subroutine TRUTH. Also in this
phase SW3 is used to add state noise if the user wants state noise added.
There are some additional title changes to inform the user on the output

plots if state noise, input noise or both was added.

Output Plots

After the closed loop control is done the system then plots the
sampled output versus time and control inputs versus time. The plotting

is done using subroutine HGRAPH or VGRAPH.

Major Subroutines

Subroutine CONTR(F2,G2,C,Y,N,IDIM,D,N6,KZ,RC15)

This subroutine uses the supplied discrete system F2, G2, C and
creates the Hankel matrix. The Hankel matrix is then inverted and is
output in RC15. Tﬁis matrix is then multiplied by the output prediction
vector, Y, to determine the input D. Subroutine CONTR is called many
times during the closed loop control phase. So to save computer time
the Hankel matrix is created and inverted the first time CONTR is called
and then stored in memory, so in subsequent callings the matrix already
exists and does not need to be recomputed. N6 was described in the
input section of this appendfx. IDIM is the initial dimension of

F2, G2, C and RC15.

Subroutine PREDICT(F1,C,X,N,IDIM,Y)
This subroutine uses parts of the discrete system model, Fl, C

and state vector x to predict the output at discrete time n to 2n-1.
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These outputs are then put into vector Y. IDIM is the initial dimen-

siop of Fl1, C, X, and Y.

Subroutine EFT(A,B,N,IDIM,F,G,M,DELT)

This subroutine finds the discrete system F and G, from a, n by n,

and B, n by n, at the sample rate of DELT.

M
i (pELT)
F=I+ IA
1=1 (€)]]

where M is the number of sumations the user wants. Then G is calculated
via

G=(F-1I)Als

where I is the identity matrix. This equation is the reason why the
restriction that A and Am must be invertable was stated in the input

section of this appendix.

Subroutine MPOWP(M,NP,N,IDIM,R)

This subroutine takes matrix M, n by n, to the power of NP. Np
is an integer value. The answer is then put into matrix R. IDIM is

the initial dimension of M and R.

Subroutine TRUTH(A,B,C,DELT,D,X,IDIM,N,TSS,YS,1S,US,RMS)

This subroutine takes the input D and state vector x and applies
them to the true system, A, B, C to update the state vector one sample
rate. To insure the complete output response and help smooth output
plots the true system runs at a sample rate ghat is eleven times faster
than the user's selected sample rate. First the true system is

discretized using subroutine EFT, at a sample rate of DELL, where

DELL = DELT/11.0

Next, input noise is added if RMS is greater than zero. Then a white




guassian noise will be added to the input. The noise will have a
standaru deviation of RMS. Next the system states are updated one
sample rate. Also the arrays to be plotted TSS, US, and YS are
created. IS is a counter for setting up these arrays. Then after
the state vector hés been updated the time, state vector and output

are printed.

Subroutine NOIZE(RMSNOTS,OUTMEAN,WN)

This subroutine uses a random number generator to create a white
guassian noise with a standard deviation of RMSNOTS and a mean of

OUTMEAN. The noise is output in WN.

Closing Remarks

This program can only be used with a single input, single output
system. But all of the subroutines and the vital parts in the main
program are set up for a system with n inputs and n outputs. The
plotting routines are set up so that with minor modifications one can
have multi-plots per run. The program uses some subroutines from

IMSL 1library packages, they are LINV2F and LSVDF.
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PROGRAM THESIS(INPUT, QUTFUT,TAPES=INPUT yTAPE6=0UTPUT,PLOT)
{ ODIMENSION AT(10,10) 937(1G416),CT(10,10)

OIMENSION AM(13,10) yBM(1C,20),CM(10,10)
DIMENSION XC(10,10),Y(1G,10) .
DIMENSION X(13,10),RC15(16,10)

C MAX NUMBER JF INPUTS ONE CAN CALCULATE WITH DIMENSION OF 10GO

C IS 58 BECAUSE OF OIVISION BY 11 IN TRUTH SUSROUTINE
OIMENSION TSS(1CC0),YS(1000),US(100d)
DIMENSION IYSS(17),1I0SS(47)4I2SS(17),IXSS(17),ISSSUL7)
OIMENSION CON1(10410) yCCN2(10,1C)
DIMENSION FT(10,40) 9FM(106,10),6T7(183,10) ,6M(10,10)
COMMON/MAIN1/NDIM,NDOIM1, CON1/MAIN2/COM2/INOU/KIN,KOJTKXPUNCH
LOGICAL SW1,SW2,SHW3

C SET UP TITLES FOR CALCOMP PLOTS
DATA IYSS(1)/20H SAMPLED OUTPUT /
DATA IYSS(9)/720H TIME IN SECONDS /
OATA IYSS(11)/2GH SAMPLED OUTPUT /
DATA IDSS(1)/720H CONTROL INPUTS 4
DATA IDSS(3)/20H TIME IN SECONDS /
DATA IDSS(11)/720H CONTROL INPUTS
DATA IZSS(1)/720H TRUE FREDICTION /
DATA I25S(3)720H FALSE FREOCICTION 7/
DATA IZSS(5)/720HTRUE CONTROL MODEL /
DATA IZ3S(7)/729HFALSE CONTROL MODEL 7/
DATA IZSS(9)/4JHSAMPLED OUTPUT WITH STATE NOISE ADDZD '
DATA IZSS(13)/40HSAMPLEC OUTPUT WITH NO NOISE AOODED

! DATA IXSS(1)/40HCONTROL INPUTS HITH STATE NOISE ADOZD /

DATA IXSS(5)/5JHCONTROL INPUTS WITH NO NOTSE ADODED /
DATA IXSS(9)/40HOUTPUT NITH INPUT AND STATE NCISE A)DEO /
DATA IXSS(13)/4GHCONTROL INPUT WITH INPUT AND STATE NOISE/
DATA ISSS(1)/740HSAMPLED OUTPUT HITH IN®UT NOISE AOD:ID /
DATA ISSS(5)/40HCONTRCL INPUT WITH INPUT NOISE ADDE) 4

C READING IN 4%TH LINE OF UPPER RIGHT HAND BOX OF PLOTS

C USUALLY READ IN IS *“SAMPLE KATE OF XXXXX*
READ(5,55E) IYSS(3) 4 IYSS(4H)

556 FORMAT (1X,2A10)
IDSS(3)=1YSS(3)
IDSS(4)=TIYSS(4)

C READ A NUMBER TO MAKE BOX IN UPPER LEFT HAND CORNER

C OR NOT I 27Z.GT+1.0 THEN NO BOX IN CONTROL

C IF ZZZ.GTe3e BUTWLE.1.0 THEN NO BOX IN OUTPUT PLOT

C BUT BOX IN CONTROL PLOT
READ®, 777
IF(ZZZ GTe0s0)IYSS(1)=0.0
IF(22246T41,0)IDSS(1)=0.0

C REAJING IN SIZE OF MY SYSTEM N

C N MUST BE LESS THAN OR EQUAL TO 10

/

/

READ*,N
IDIN=10
79355
'S ' NOIM=190 )
NDIMi=1g .
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KIN=5
KOUT=5
KPUNCH=7 ‘
C READING IN TRUE SYSTEM IN STATE MATRIX FORM
READ?, ((AT(I,J)yJ=1yN) I=1,N)
READ*, ((BT(IyJ)yJ=19N)I=1,N)
REAO"((CT(I'J)|J=1’N)’I=1’N’A
C READ IN PERTURBED SYSTEM IN STATE MATRIX FORM
READ¥ 3 ((AM(I,J)yJ=1,N),I=1,N)
READ®, ((RM(I4J)9J=1yN)I=1,N)
READ®, ((CM(I,J)yJ=14N)yI=1,yN) : -
2 CONTINUE
READ IN SAMPLE RATE USED
READ®*, DELT
TO STOP PROGRAM LET DELT BE <LE.D.O
IF(DELT.LE.0.0) GOTO 96
READING SIZE OF HANKEL MATRIX USED IN INVERSE
IN SUIROUTINE CONTR
READ®*, NS
READING IN THE NUMBER OF TIMES YOU CALCULATE AN INPUT
READ®*,X2
PRINT*,"DELT=",DELT
READING RMS VALUES FOR NOISES
FIRST IS FOR NOISE ADDED TO STATES
THEN NOISE APDED TO INPUTS
IF RMS LESS THAN ZERO NO NOISE ADDED TO INPUTS
READ* , RMSNO IS, RMS
READ IN LOGIC SHWITH FOR COMPUTATION
SHi FOR PREDICTION SWi=TRUE USING MATRIX AT FOR PREDICTION
SHi=FALSE, USING MATRIX AM FOR PREDICTION
SW2=TRUE, USING TRUE MODEL FOR CONTROL PART OF PROBLEM
SW2=FALSE, USING PERTURBEO MODEL FOR CONTROL FAPT OF PRJIBLEM
SH3=TRUE, USING NOISE IN STATE UPDAT:E
SW3=FALSE, NO NOISE BEING USED,
READ(5,555) SH1i,SHW2,SH3
555 FORMAT (3L 1)
C SET COUNTER TO ZERO
I1S=0
C GENERATE MY DISCRETE F AND G MATRIX FOR TRUTH AND MODEL SYSTEM
' M1=55
CALL EFTCAT BT yNyIDIM,FT ,GToM1,0ELT)
CALL EFT(AM,BMoNyIDIMSFN yGMeML1,DELT)
C GENERATE INITIAL CONDITIONS RANDOMLY : -
CALL RANSET(29) *
00 444 I=1,Ny1t ‘ '
X0(I,4)=10*RANF(2Z9)
bbb CONT INUE
PRINT® 4= =
PRINT*,” INITIAL CONDITIONS ARE"™
CALL PRNMA(XO4N,1,I0IN)
CALL COPY(XO0,XsN,IDINM)
PRINT#,~ =

O OO0 O O

OOOOOHOO OOHOO

-
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D0 445 KNI=1,KZ,1
C GOTO PROPER PREDICTION USING LOGIC SWITCH #1
IF (SH1) 50TO 29
. IYSS(5) =17SS(3)
‘ . IYSS(5)=IZSS (k)
I0SS(5)=12SS(3)
I0SS(E) =17SS(h)
PRINT® ,“USING MODEL MATFIX SWi IS FALSE™
CALL PQ‘DICT(FH,OH,X,N,IDIH.Y)
G0TO 30
29  PRINT®,"USING TRUTH MATRIX SWi IS TRUE®
IYSS(5)=17SS(1)
IVSS(6) =1 7SS(2)
I0SS(5) =12SS(4)
10S5(6)=17SS(2)
CALL PREOICT(FT,CTyX,N,I0IN,Y)
30 - PRINT*," MY PREDICTION IS *
-CALL PRNMA(Y,;N,1,IDIM)
PRINT®,= =
c GOTO PROPER CONTROL USING LOGIC SWITCH #2
IF(SW2) GOTO 39
IYSS(7)=1ZSS(7)
1YSS(8)=I2SS(3)
I0SS(7) =I7SS(7)
I0SS (8) =I7SS(8)
PRINT*,~USING MODEL MATRIX FOR CONTROL SN2 IS FALSE®
CALL CONTR(FMyGMyCMyY o Ny I0IM,Dy N5y KNI,RC15)
60TO 40
( 39 PRINT®,“USING TRUTH MATRIX FOR CONTROL SK2 IS TRUE™
- IYSS(7) =125S(5)
IYSS(8)=I7SS(6)
IDSS(7)=175S(5)
10S5(8)=12SS(6)
CALL CONTR(FT,GT yCT oY gNy I0IM 4Dy NG KNI,RCLE)
40  PRINT*,” = _
PRINT*,~MY INPUT IS *,0
PRINTS," =
CALL TRUTHCAT 8T ,CT,0ELT 905X 0, I0IMsN,TSS,YS, IS, US,RYS)
C PUT IN NOISE USING SWITCH #3
IF (RMS.LE.0.) GOTO 798
IF (SH3) GOTO 49
PRINT® = =
PRINT®, “INPUT NOISE ADDED BUT NO STATE NOISE ADDED™
00 865 KN=13,16,4
IYSS (KN) 2 ISSS (KN-12)
I0SS (KN) =ISSS (KN=8) :
866 CONTINUE : .
CALL COPY(X0sX,NyIDIN)
GOTO 445
& &9 PRINT®,=» =
: PRINT*,~B0TH INPUT NOISE AND STATE NOISE ADDEO™
. 00 867 KN=13,1691
O IYSS (KN) =IXSS (KN=&)
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{ 867
798

ere

799

879
178

L 113

H4S

JOSS (KN) =IXSS(KN)

CONTINUE

GOTO 778

IF (SHW3) GOTO 799

PRINT®,"NO INPUT NOISE OR STATE NOISE AODED™
00 578 XN=13,16,1

IYSS (XN) =I2ZSS (KN)

JOSS(KN) =IXSS(KN-8)

CONTINUE

CALL COPY(X0yXyNyIDIN)

GOTO 44&5

PRINT®,"NO INPUT NOISE BUT STATE NOISE ADOED"™
00 879 KN=13,16,1

IVSS(KN)=IZSS(KN=4)

JOSS(KN) =IXSS(KN=12)

- CONTINUE

CONTINUE

D0 LhE KP=1,N,1

OUTMEAN=0,.0

CALL NOIZE(RMSNOIS,OUTMEAN;HWN)
A(KP 1) =XC(KPy 1) +HN

CONTINUE

PRINT* ,“STATES AFTER NOISE ADDED"
CALL PRNMA(X,Ny1,I0IM)

PRINT®,” =

CALL PLOT (D ¢e9=le9~T)

CALL HGRAOPH(TSS,YSyISyIVSSy14+0,1)
CALL PLOTV(0eys=ltes=3)

"CALL HGRAPH(TSS,US,IS,IDSSy1,0,1)

60T0 12
CONTINUE

CALL PLOTE(M1)
STOP :

END
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SUBROUTINE CONTR(F29G29C9YyN,IDIM, 0y NS 4KZ9yRC15)
C THIS SUBROUTINE CREATES THE HANKEL MATRIX
C AND USES IT FOR COMPUTING THE INPUT NEEDED
OIMENSION F2(IDIM,IDIM)yG2{1IDIM,IDIM)
ODIMENSION C1(10,16) ,02¢(140,10),C3(01,10) ,CL:(10,10)
DIMENSION C5(10,10),C(I0IV, IDINM)
DIMENSION RC5(10913)5sRC1S(IDINM,I0IM)
OIMENSION P(10,10)
OIMENSION G7(10,10),Q(16) WK (20),8(10,10)
DIMENSION Y(IDIM,IOIM),U(10,10)
IF(KZ.6T+1) GOTO 656
‘CALL COPY(C,C5,N,IDINM)
CALL COPY(G246G7yN,IDIM)
] FIND HANKEL (IMPULSE RESPONSE) MATRIX
00 1115 J=1,Ny1
€2(1,J)=C(1,J)
Ce(Jy1)=67 (Jy1)
1145 CONTINUE
00 1113 I=2,Ny1
CALL MULT(CS5,F2,C1,5,1,NyN,IDINM)
CALL MULT(F24G79C353NyNy1,I0IM)
00 11ii% J=1,N,1
C2l1I,J)=C1(1,))
( Ct (JyI)=C3(Js1)
1114 CONTINUE
CALL COPY(C1,C5,N,I0IH)
CALL COPY(C34G79N,IDIM)
4143 CONTINUE
CALL MULT(C2,C4sRCSyNgNyN,IDIM)
IA=]IDIM
I06T=N
PRINT® ,“HANKEL MATRIX IS*™
CALL PRNMA (RC5,N6yN6, ID1 M)
CALL COPY(RC5,PyNyIDINM)
CALL LSVDF(P;IDIMyNy;NyBy=13=1,Q,HKL,IER)
PRINT® g =
PRINT® ,™ SINGULAR VALUES OF HANKEL MATRIX™
CALL PRNMACQyNy1,I0INM)
CALL GMINV(NGyN69RC59RC159MK5)
PRINT® , “RANK OF HANKEL MATRIX Is *9 MR
666 GONTINU’
CALL HULY(R315’V'UQN5’N5'19101",

O=-U(N6,1)
RETURN
END
, ¢
| ¢
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SUBROUTINE PREOICT(F1,CyXyNeIDIN,Y)
C THIS SUBROUTINE OOES THE OQUTPUT PREDICTION
C PHASE OF OPOEC.
ODIMENSION FL1(IOINM,IOIM)
ODIMENSION X(IOIMoJIOIM) ,Y(IOIMoIOIN?
OINENSION 21(10,10),22(106,10),R(10,10)
DIMENSION C(IDIM,IODINM)
Nexg
N7zNeN=-4
DO 196 II=NyN7,1
CALL MPOWP(F1,II,N),IDIN,R)
CALL MULT(RsXyZ13NyNy 1,I01IN)
CALL MULT(C3Z21,22,19Ny1,yI0INM)
Yi{NGLs1)=22(1,1)
Ne=NHhed
196 GONT INUE
RETURN
- END

LA Zd A X LTI A IR L 2RISR R LI YIRS RISV Y ST SNY YY)

SUBROUTINE ADDING(A,8,C,NyM,I0IM);
N IS ROH, M IS COLUMN
THIS ADDS TWO MATRICES OF SAME SIZE
DIMENSION A(IDIM,IDIM) R (IDIM)IDIM)ZC(INIV,ININ)
D0 906 J=i,MN,1
DO 9086 I=1i,N,1¢

QO OOONHO

C(I,0)2A(T,J)+8B(X,J)
906 CONTINUE
RETURN
END
g
COSHIT SIS STSIRINIIBIIIFI SN SISGH VSN BFS RS IFTSFEES LSS50
c
c

 SUBROUTINE COPY(A,B8,N,IDIN)
C MUST BSE A SQUARE MATRIX
C COPIES A INTO B
DIMENSION A (IDIM,IDIM),8 (I0IMN,I0IM)
D0 1100 JS=1,Nyd
D0 1188 JTa1,Nj1

8(JS,JT) =ALJS5JT)
1180 CONTINUE
© RETURN - :
N -
c | v
c -~

c..l."O""‘&!...‘.0."‘.00“..0‘.‘.0...0'..."...‘.Q..‘l."
~
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c
SUBROUTINE EFT(A,8,NyI0IVM,ALBS .M, DELT)
C THIS SUBROUTINE FIND MY DISCRETE SYSTEM F AND G
C FROM A AND B8, A IS NXN AND B IS NXN
C DELT IS MY TIME INCREMENTy AND M IS THE NUMBRER
C OF ITERATIONS IN MY SUM I WANT TO GOo
DIMENSION B(IDIM,IDIM),A(IDIMN,IDIN)
DIMENSION A4L(IDIM,IDIM),BS(IDIM,IDIM)
DIMENSION A2(10,10),A3(10,13)
OIMENSION AI(10,10)
DIMENSION A5(10,10) yAINV (10,10)
DIMENSION B4(10,10)
OIMENSION P(10,10) >
DIMENSION WKAREA (2000
C SET UP IDENITY MATRIX
CALL COPY(A,yPyN,I10IM
IA=IDIM
JO6T=N
00 1902 I=1,10IM,1
00 1003 J=1,N,1
AI(X,J)=0,0
Ab(I,J)=0,.0
1003 CONTINYE _
AI(I,X)=1,0 . |
4002 CONTINUE ' '
: C FINE Q SUCH THAT F=Q+I AND Ggﬂ‘lINV'B
( Cb=1,.9
OET1=21,.0
00 1111 I=1,My1
DETL=DET1*DELT
C6=C6*%] :
ABLE=DET1/C6
CALL MULT (AX A A2,NyNyNy IDIN)
CALL COPY(A2,AI,N,IDIM)
CALL MULTXKC(A2,ABLE A34NyNyIDIM)
CALL ADIING(A3IAL,ASyNyNL,IDIM)
CALL COPY(AS,A4,N,1I0IM)
1141 CONTINUE .
C FIND AINV -
CALL LINVZF(‘,N,I‘,“INV,IDGT.WK‘QEA)IER)
CALL MULT (AL AINV,BLyNgNyNyIOIM)
CALL HULT(B“,B.BS,N,N,i,ICIN)
D0 1001 I=1,N,14
AG(II)=AL(I I)*1.0
4001 CONTINUE
CALL COPY(A,P4N,IOINM)
C Ab IS MY F.AND 85 IS MY G
. RETURN
(111

}
(T COSSSITIINNITRISIINISUIRITR ISR RISS USRI NSRS JUISUIVIB IV 2008 .
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c
c
CUTATT SV UG SRS BISRIBIVIIINSNNIBISIIIVIIIIUBSSSBTRIIIBISEBINOS

c

c
SUBROUTINE TRANSP(A,8,N, IDIM)
C THIS TRANSPOSES A AND PUTS INTO 8
OIMENSION A(IDIM,IDIM)
DIMENSION B(IDIM,IDINM)
00 13CC J=1,N,1
00 1309 I=1,N,1

T BlIyJd)=a(Jy 1)
1300 CONTINUE -
RETURN
END
c
c

COPRIL IR SF RN T S URS LB SJ32 50 BRR0BIG000 3333 L 333255308808

C

c . .
SUSROUTINE MULTXK(A,D,CyMyN, IOIM)
c THIS MULTPLIES A MATRIX BY A CONSTANT
: DIMENSION ACIDIM,IDIM),C (IDIM,IDIN)
00 905 J=1,M,1
00 905 I=1,N,1

.G

ClJyI)=2A(JyI)*%D
905 CONTINUE
RETURN
END
c , .
c :
CHPNIINSBRIRB AU SRSRSRAPRIFINC ARSIV PSS ISRV SSERSNSLI5 3
c

SUBROUTINE MULT (S,STyH,yL yMyN,IDIM)
C THIS MULTPLIES TWO MATRICIES TOGETHER
OIMENSION S(IDIH,IDIH),ST(IDIH,IDIH),H(IDIH,IDIH)
00 2000 I=1,L,1 '
. 00 2080 K=1,N,1
SUM=0.0
00 2001 J=1i,M,1
SUNaSUM+S (T9J) *ST (JyX)
2001 CONTINUE

H{I,K) =SUM
2000 CONTINUE
RETURN
ENO
c
c

c‘.&'.".’.‘.l’l""....l.‘."l"’.".‘.l."l!‘!0""..0.""
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c .
2w o A - e s 7
SUBROUTINE TRUTH(AL1,81,C8,0ELT,DyX,IDIM,N, TSS,¥S,IS,US,INS)
€ THIS IS THE TRUE SYSTEM RESFCNSE WHICH IS RUNNING
C ELEVEN TIMES FASTR, SO THAT THE OUTPUT PLOTS ARE SMOOTM
C IT ALSO CREATES THE ARRAYS FOR CALCOMP PLOTS
: ODIMENSION X(IDIM,IDIM),TSS(1C00)
OIMENSION A1(105,10),91(10,10),C8(10,10)
OIMENSION Z6(19,10) ,27(10,10)
DIMENSION F3(104510),63(13,10)
DIMENSION SY(10,10),YS(1000),US(1000)
H=50 )
DELL=DELT/11.0
CALL EFTCAL,B1,N,IDIM,F3,6G3,M,0ELL)
00 702 IP=1,11,1
IS31S+2
IF(IS.EDe1) GOTO &u
TSS(IS)=TSS(IS~-1)+DELL
GOTO 45
L1 TSS(IS)=DELL
45 CONTINUE
P e=o . . - . - - .
IF (RMS.LE.0.0) GOTO 777
OUTMEAN=0, -
CALL NOIZE(RMSyOUTMEAN,WN)
8S=D+HN
- T77 CONTINUE
UsS(IS)=8
776 CONTINUE
CALL MULT(F39X9Z6sNgNy1yIOIN)
CALL MULTXK(G3,8,Z7,N,yi, I0IM)
CALL ADDING(Z65Z79XyNy1y ICIM)
CALL MULT(CB8yX9SYy1iyNsi, IDIM)
YS(IS)=SY(1,1)
702 CONTINUE ‘
PRINT®*,” TIME IS *“,TSS(IS)y™ MY STATES ARE "
CALL PINMA(XyN9e1,I0IM) : .

PRINT® = =
PRINT?,* QUTPUT IS *,V¥S(IS)
PRINT®,® « .
RETURN
ENO

c

c

COSSSP S SPSI 00530V IBSASBSIIBINTIIIU0050320 5003053800000 009080
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SUBROUTINE PRNMA (AgNyMoIDIM)

C THIS SUBROUTINE PRINTS OUT ANY SIZE MATRIX

C M IS THE NUMYBER OF COLUMNS

C N IS THE NUMBER OF RONS

L OIMENSION A (IDIM,IDINM)

00 1112 J=i,N,2Q
WRITE(S,111)(A(J,1),I=1,M,1)

144  FORMAT(™ “,10(2X,E10.4))

1142 CONTINUE

RETURN
ENOD
c
COGISI I SISEIIIIIIIINIIIBUIIIIIIIIIIIIIIIIIIE NI SUITIIIIIITINIY
c
c

SUSROUTINE MPOUWP (MyNP gNy IDINMLR)
C FINDS RaM?eNP
OIMENSION M(IDIM,I0IM),K (I0INM,I0IN)
ODIMENSION R1(10,10),R2(18,19)
00 193 J=1,I0INM, 1
00 19% I=1,IDIN, ¢
Ri(I,JI=8,.0
R2(I,J)=0,0
19%% CONTINVE
R1(JyJ)=1,98
193 CONTINUE
00 195 JJi=g,NP,1
“ CALL MULT(MRL,R2,MoN Ny, I0IM)
CALL COPY(R2,R1,NI™"N)
199 CONTINUE
CALL SOPY(R2,R,N,I0IN)

RETURN
END
¢
c
GOV SIS BP LIS SUNISIIIBIN ST SIS GEUIII ISR NN SIINIS
¢
¢

SUSROUTINE NOIZE (RMSNOTS , OUTNEAN, UN)
(LI TYPL LY LY LY ¥ LYY TV T2 PRV 2OVY 19N
C SUBTOUTINE NOISE CALCULATES THE VALUES OF THE MEASUREMENTY NOISE

‘G COMPONENTS USING A RANDOM NUMBER GENERATOR MOOELLED AS 34USSIAN
COSICIIBIIINIL OB SIS SS05000 0000000

GAUSS=4,

00 333 Isg,12,14

GAUSS=GAUSS+RANF (Z40)
333  CONTINUE : .

CAUSS=GAUSS 6. *OUTNEAN o :

WisCAUSS®RNINOTS

RETURN

ome




SUSROUTINE HGRAPH(X Y 9Ny ITyNOyNPyNS)

C IF ID(1)=3,33( BOX IN UPPER RIGHT CORNZK
C IS NOT PLOTTED

10

25

Y

OIMENSION X(1),v(1),ID(2) & IF(NJ.EN.2) GC YO 30

IF (NO.LT.G) GO TO 1t

CALL SCALE(X,7TepNy1) $ CALL SCLZLE(YyC oyNy1)
CALL PLIT(B.590,69-3) § CALL PLOT(Ceplles3)

CALL PLOT (~16335163%,3)

CALL'PLOT(-7.15,1.35,2) S CALL PLOT('7015'9055'2’
IFC(IN(1) ENWCUI) GO TO 25

CALL PLOT(=T7e¢0595e55,3) ¢ CALL PLOT(=7e5S537e5520
00 20 I21,7,2

CALL SYYMBOL(I*01-6,9,7¢8% 54075,10(1),90.,520)

CALL PLOT(=7e8597 55, 3) € CALL PLOT(=helS537¢5542)
CALL PLOT (=6:059945%,2) $ CALL PLOT(=7,£5,%,95,2)
CALL PLOT(-?.iS,Q.GE.SJ

CALL PLOT(=1,35,9,£5,2) S CALL PLOT(=1:.325,1,35,2)
CALL SYYROL (266" 91015 9019IN(13),3349%M)

CALL AXIS(=1.8592:41T0(C)5=2357T 0920 sX(N+1)4X(N+2))
CALL AXIS(=3683,2,1,I0011)520:5,918L09Y(N+1),Y(N+2))
YI(N#2) ==Y (N+2)

XIN+L) X (NSL1) =2, 42X (N42) § YIN4LI=Y(N+1L)e1,85°Y(N+2)
CALL LINE(Y )X yNy1yNPyhS)

X(N*L) =X (NEL) €2, 12X IN*2) & YIN4L)=V(NeL)=1,85Y(Ne+2)
Y(N¢2) ==Y (N +2) ‘

RETURN $ END

SUSKOUTINE VGRAPH (X oY 9Ny IDsN0¢NP¢NS)

OIMENSION X(1),Y(1),I0(2) S IF(ND.ER.2) 6GC TO 30

IF (NO.LY.6) G2 TO 1¢C

CALL SCALF(Xy«e94Ny1) $ CALL SCALE(Y37eGyNy1)
CALL PLOT( 855000~ ¢ CALL PLOT(Ge511:43)

CALL PLOT (=1:33,1.36,3)

CALL PLAT(=7e1591:3%,)2) & CALL PLOTU=7,15,9.65,2)
CALL P.OT(=1,33,9,6%5,2) 3 IF(ID(1).EN.000) GO TO 25
CALL PLOT(=1.43,9.3%93) & CALL PLOT(=3,45,9.5%,2)

00 29 Iz $,7,2

CALL SYIRDL (=308  ¢F b =1® o 1G9e87:10(I)534920)

Cltl ’t:'(".ﬂ”905993, t C‘LL ¢LOT(-3.“5.G.55.2)'
CALL PLOT(=1.48,08,37,2) & CALL PLOT(=1,45,9.55,2)
CALL PLOT(~2:3599.,6%,23) )

CALL PLOT (~2:3391:3%,2)

CALL SYYRDNL («662 980159029 ID(13)90,94T)

COLL AXISCoBouole83,I0(8) )=2B9bedy JagXIN®L) (X(NSG2))
CALL AXIS (60991025 ,20C(11),2097e299C oY INGL) V(N2
RiNeL)oX (Ne1) 06,2 (NeR) § VINGL)aY (N*L)=1,050Y (N#2)
CALL LINE(X YoMy Loy NS)

RENeL) o (NoL) cpo X (N®D) § YIN®L) sY(N#1) 41,850 Y (NS2)
L TUR $ €40

Eﬂykgayﬁﬂﬁ;
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